
A Python Quick Reference

Postscript version v1.1.1, by Anthony Baxter,
<anthony@aaii.oz.au>
Based on:
ASCII v1.0; 1994/09/27
Author: Chris Hoffmann,
choffman@vicorp.com
Based on
• Python Bestiary,

by Ken Manheimer,
(ken.manheimer@nist.gov)

• Python manuals,
by Guido van Rossum,
(guido@cwi.nl)

• python-mode.el,
by Tim Peters,
(tim@ksr.com)

Invocation Options

python [-diuv] [-c command |
script | -] [args]
-d Turn on parser debugging output (for

wizards only, depending on compilation
options).

-i When a script is passed as first argument
or the -c option is used, enter interactive
mode after executing the script or the
command. It does not read the
$PYTHONSTARTUP file. This can be
useful to inspect global variables or a
stack trace when a script raises an excep-
tion.

-u Force stdout and stderr to be totally
unbuffered.

-v Print a message each time a module is
initialized, showing the place (filename
or built-in module) from which it is
loaded.

-c command
Specify the command to execute (see

next section). This terminates the option
list (following options are passed as
arguments to the command).

- anything afterward is passed as options
to python script or command, not inter-
preted as an option to interpreter itself.

script is the name of a python file to execute
args are passed to script or command (in

sys.argv)
If no script or command, Python enters inter-
active mode. Uses “readline” package for
input, if available.

Environment Variables

PYTHONPATH
Augments the default search path for module
files. The format is the same as the shell’s
$PATH: one or more directory pathnames sep-
arated by colons.
PYTHONSTARTUP
If this is the name of a readable file, the
Python commands in that file are executed
before the first prompt is displayed in interac-
tive mode.
PYTHONDEBUG
If non-empty, same as -d option
PYTHONINSPECT
If non-empty, same as -i option
PYTHONUNBUFFERED
If non-empty, same as -u option
PYTHONVERBOSE
If non-empty, same as -v option

Terms used in this document

sequence– a string, list or tuple
suite– a series of statements, possibly sepa-
rated by newlines. Must all be at same indenta-
tion level, except for suites inside compound
statements
<x>– in a syntax diagram: not literally the
string “x” but some token referred to as “x”
[xxx]– in a syntax diagram means “xxx” is
optional
x → y– means the value of <x> is <y>
x ↔ y– means “x is equivalent to y”

Notable lexical entities

Keywords

and elif from lambda return
break else global not try class
except if or while continue
exec import pass def finally in
print del or is raise

Illegitimate Tokens (only valid in strings)

@ $?
A statement must all be on a single line. To
break a statement over multiple lines use “\”,
as with the C preprocessor.
Exception: can always break when inside any

(), [], or {} pair.
More than one statement can appear on a line
if they are separated with semicolons (“;”)
Comments start with “#” and continue to end
of line.

Identifiers:

(letter|”_”)(letter|digit|”_”)*

Strings:

“a string” ‘another string’
‘’’a string containing embedded
newlines, and quote (‘) marks,
can be delimited with triple
quotes.’’’

String Literal Escapes

 \newline Ignored (escape newline)
\\ Literal backslash (\)
\e Escape (ESC)
\v Vertical Tab (VT)
\’ Single quote (‘)
\f Formfeed (FF)
\0OO (zero) char with value 0
\” Double quote (“)
\n Linefeed (LF)
\octal value OO
\a Bell (BEL)
\r Carriage Return (CR)
\xXX char with hex value XX
\b Backspace (BS)
\t Horizontal Tab (TAB)
\<any other char> is left as-is
NULL byte (\000) is not an end-of-string
marker; NULL’s may be imbedded in strings
Strings (and tuples) are immutable: they can-
not be modified.

Other types:

long integer (unlimited precision):
1234567890L

octal integer:
0177, 017777777777777L

hex integer:
0xFF, 0xFFFFFFFFFFFFL

float:
3.14e-10

tuple of length 0, 1, 2, etc:
() (1,) (1,2)

(parentheses are optional if len > 0)

list of length 0, 1, 2, etc:
[] [1] [1,2]

dictionary of length 0, 1, 2, etc:
{} {1 : ‘one’} {1 : ‘one’,

‘next’: ‘2nd’}
(Indexing is 0-based. Negative indices (usu-

ally) mean count backwards from end of

sequence.)

 Sequence slicing
[starting-at-index : but-less-than-index]

(Start defaults to ‘0’; End defaults to

‘sequence-length’.)

a = (0,1,2,3,4,5,6,7)
a[3] → 3
a[-1] → 7
a[2:4] →(2, 3)
a[1:] → (1, 2, 3, 4, 5, 6, 7)
a[:3] →(0, 1, 2)
a[:] →(0,1,2,3,4,5,6,7) (makes a

copy of the sequence.)

Basic Types and Their Operations

Comparisions (defined between any types)

< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
!= not equal (“<>” is also

allowed)
is object identity (are objects

identical, not values)

is not negated object identity
X < Y < Z < W has expected meaning,

unlike C

Boolean values and operators

False values: None, numeric zeros, empty
sequences and mappings

True values: all other values
not X: if X is false then 1, else 0
X or Y: if X is false then Y, else X
X and Y if X is false then X, else Y
(‘or’, ‘and’ evaluate second arg only if nec-

essary to determine outcome)

Predefined object of special type:None

None is used as default return value on func-
tions. Input that evaluates to None does not
print when running Python interactively

Numeric types

Floats, integers and long integers. Floats are
implemented with C doubles. Integers are
implemented with C longs. Long integers have
unlimited size (only limit is system resources)

Operators on all numeric types

abs(x) absolute value of x
int(x) x converted to integer
long(x) x converted to long integer
float(x) x converted to floating point
-x x negated
+x x unchanged
x+y sum of x and y
x-y difference of x and y
x*y product of x and y
x/y quotient of x and y
x%y remainder of x / y
pow(x,y) x to the power y
divmod(x,y)the tuple (x/y,x%y)

Bit operators on integers and long integers

~x the bits of x inverted
x^y bitwise exclusive or of x and y
x&y bitwise and of x and y
x|y bitwise or of x and y
x<<n x shifted left by n bits
x>>n x shifted right by n bits

Numeric exceptions

TypeError: raised on application of
arithemetic opertion to non-number

OverflowError: numeric bounds exceeded
ZeroDivisionError: raised when zero
second argument of div or modulo op

Operators on all sequence types (lists,

tuples, strings)

len(s) length of s
min(s) smallest item of s
max(s) largest item of s
x in s 1 if an item of s is equal to x,

else 0
x not in s0 if an item of s is equal to x,

else 1
s+t the concatenation of s and t
s*n, n*s n copies of s concatenated
s[i] i’th item of s, origin 0
s[i:j] slice of s from i to j (slice from

index i up to but not including

index j. i defaults to 0, j to

len(s).Negative goes from

right-end of sequence)

 Operators on mutable sequences (lists)

s[i]=x item i of s is replaced by x
s[i:j]=t slice of s from i to j is

replaced by t
del s[i:j]delete slice (same as

s[i:j]=[])
s.append(x)add x to end of s
s.count(x)return number of i’s for which

s[i] == x
s.index(x)return smallest i such that

s[i] == x1)

s.insert(i, x)item i becomes x, old
item i is now at i+1, etc.

s.remove(x) same as del
s[s.index(x)]

s.reverse() reverses the items of s (in
place)

s.sort() sorts the list (in place)
(Optional parameter: function

of two arguments returning -1,

0 or 1 depending on whether

arg1 is >, ==, < arg2)

IndexError is raised on out-of-range
sequence subscript

Operations on mappings (dictionaries)

len(a) the number of items in a
a[k] the item of a with key k
a[k] = x set a[k] to x
del a[k] remove a[k] from a
a.items() a copy of a’s list of (key, item)

pairs
a.keys() a copy of a’s list of keys
a.values()a copy of a’s list of values
a.has_key(k)1 if a has a key k, else 0

TypeError is raised if key not acceptable.
KeyError is raised if attempt is made to read
with non-existent key

Format operator for strings (%)

Uses sprintf codes, supports: %, c, s, i, d, u,
o, x, X, e, E, f, g, G.
Width and precision may be a * to specify that

an integer argument specifies the actual width
or precision. The flag characters -, +, blank, #
and 0 are understood.
%s will convert any type argument to string
(uses str() function)
a=‘%s has %03d quote types’%
(‘Python’,2)
a→‘Python has 002 quote types.’
Right-hand-side can be a mapping:
a = ‘%(lang)s has %(c)03d quote
types.’ % {‘c’:2,
‘lang’:’Python}
(vars() function very handy to use on right-

hand-side.)

File Objects

Created with built-in function open() ; may
be created by other modules’s functions as
well. Operators:
f.close(x)close file
f.flush(x)flush file’s internal buffer.
f.isatty()1 if file is connected to a tty-

like dev, else 0
f.read([size])

read at most most <size>
bytes from file and return as a
string object. If <size> omit-
ted, read to EOF.

f.readline()
read one entire line from file

f.readlines()
read until EOF with read-
line() and return list of lines
read.

f.seek(offset, whence=0)
set file’s position, like stdio’s
fseek().
whence == 0 then use abso-
lute indexing
whence == 1 then offset rel-
ative to current pos
whence == 2 then offset rel-
ative to file end

f.tell() return file’s current position
f.write(str)

Write string to file.
EOFError — End-of-file hit when reading
(may be raised many times, e.g. if <f> is a
tty).
IOError — Other I/O-related I/O operation
failure

Advanced Types

See manuals for more details

Module Objects
Class Objects
Type Objects
Callable types:

User-defined (written in Python):
User-defined Function Objects
User-defined Method Objects

Built-in (written in C):
Built-in Function Objects
Built-in Method Objects

Internal Types:
Code Objects
Frame Objects
Traceback Objects

Statements

pass Null statement
= assignment operator. Can

unpack tuples,
first,second = a[0:2]

del Unbind name from object, or
attributes from objects, etc.

print [<c1> [,<c2>]* [,]
Writes to sys.stdout. Puts
spaces between arguments. Puts
newline at end unless statement
ends with comma. Print is not
required when running interac-
tively, simply typing an expres-
sion will print its value, unless
the value is None.

exec<x>[in <glob> [,<loc>]]
executes <x> in namespace
provided. Defaults to current
namespace. <glob> is a dic-
tionary containing global name-
space, <loc> contains local
namespace. <x> can be a
string, file object or a function
object.

Control Flow

if <condition>: <suite>
[elif <condition>: <suite>]*
[else: suite]

usual if/else_if/else
statement

while <condition>: <suite>

[else: <suite>]
usual while statement. else
suite is executed after loop
exits, unless the loop is exited
with break

for <target> in <condition-
list>: <suite>
[else: <suite>]
iterates over sequence <con-
dition-list> assigning
each element to <target>.
else suite executed at end
unless loop exited with “break”

break immediately exit for or
while loop

continue immediately do next iteration
of for or while loop

return [<result>]
return from function (or
method) and return
<result>. If no result given,
then returns None.

Exception Statements

try: <suite1>
[except [<exception> [,

<value>]: <suite2>]+
[else: <suite3>]

statements in <suite1> are
executed. If an exception
occurs, look in except
clauses for matching <excep-
tion>. If matches or bare
except execute suite of that

clause. If no exception happens
suite in else clause is exe-
cuted after <suite1>. If
<exception> has a value, it
is put in <value>. <excep-
tion> can also be tuple of
exceptions, e.g. except
(KeyError, NameEr-
ror), val: print val

try: <suite1>
finally: <suite2>

statements in <suite1> are
executed. If no exception, exe-
cute <suite2> (even if
<suite1> is exited with a
return, break or con-
tinue statement). If an excep-
tion did occur, executes
<suite2> and them immedi-
ately reraises exception.

raise <exception> [,<value>]
raises <exception> with
optional parameter <value>.

An exception is simply a string (object). Cre-
ate a new one simply by creating a new string:
my_exception = ‘it went wrong’
try: if bad:

raise my_exception, bad
except my_exception, value:

print ‘Oops’, value

Name Space Statements

import <module_id1> [, <module_id2>]*
imports modules. Members of
module must be referred to by
qualifying with module name:
“import sys; print sys.argv:

from <module_id> import <id1>
[, <id2>]*
imports names from module
<module_id>. Names are
not qualified:
from sys import argv
print argv”

from <module_id> import *
imports all names in module
<module_id>, except those
starting with _

global <id1> [,<id2>]*
ids are from global scope (usu-
ally meaning from module)
rather than local (usually mean-
ing only in function).
In a function with no “global”
statements, assume a is name
that hasn’t been used in fcn or
module so far.
Try to read from a→NameEr-
ror.
Try to write to a→creates a
local to fcn. If a not defined in
fcn, but is in module, then:
Try to read from a, gets value
from module.
Try to write to a, changes a in

module

Function Definition

def <func_id> ([<param_list>]):
<suite>
creates a function object and
assigns it name <func_id>.

<param_list> → [<id> [, <id>]*]
[<id>=<v>
[,<id>=<v>]*]
[,*<id>]
Parameters with “=” have
default values (<v> is evalu-
ated when function defined). If
list ends with “*<id>” then
<id> is assigned a tuple of all
remaining args passed to func-
tion.(allows vararg functions).

Class Definition

class <class_id>
[(<super_class1>
[,<super_class2>]*)]:
 <suite>

Creates a class object and assigns it name
<class_id>. <suite> may contain
“def”s of class methods and assignments to
class attributes
E.g.
class my_cl (cl1, cl_lst[3]):
Creates a class object inheriting from both
cl1 and whatever class object cl_lst[3]
evaluates to. Assigns new class object to name

my_class.
First arg to class methods is always instance
object. By convention this is called “self”.
Special method __init__() called when
instance created. Create instance by “calling”
class object, possibly with args. In current
implementation, you can’t subclass off built-in
classes.
E.g.

class c (c_parent):
def __init__(self, name):
self.name = name
def print_name(self):
print “I’m”,\
self.name

def call_parent(self):
c_parent.print_name(self)

instance = c(‘tom’)
print instance.name
‘tom’
instance.print_name()
“I’m tom”
Call parent’s super class by accessing parent’s
method directly and passing “self” explic-
itly (see “call_parent” in example
above).
Many other special methods available for
implementing arithmetic operators, sequence,
mapping indexing, etc.

Others

lambda [<param_list>]: <condi-
tion>
Create an anonymous function.

<condition> must be an
expression not a statement
(e.g., not “if xx:...”,
“print xxx”, etc.) and thus
can’t contain newlines. Used
mostly for filter(),
map(), reduce() functions.

Built-In Functions

abs(x) Return the absolute value of a
number

apply(f,args)
Call func/method <f> with
args <args>

chr(i) Return one-character string
whose ASCII code is integer i

cmp(x,y) Return neg, zero, pos if x <,
==, > to y

coerce(x,y)
Return a tuple of the two
numeric arguments converted
to a common type.

compile(string, filename, kind)
Compile <string> into a
code object. <filename> is
used for error reporting, can be
any string. <kind> is either
‘eval’ if <string> is a sin-
gle stmt, else it should be
‘exec’.

dir([object])
If no args, return the list of
names in current local symbol
table. With a module, class or

class instance object as arg,
return list of names in its attr
dict.

divmod(a,b)
Returns tuple of (a/b, a%b)

eval(s, globals, locals)
Eval string <s> in (optional)
<globals>, <locals>.
<s> must have no NULL’s or
newlines. <s> can also be a
code object. E.g.: x = 1;
incr_x = eval(‘x +
1’)

filter(function, list)
Construct a list from those ele-
ments of <list> for which
<function> returns true.
<function> takes one
parameter.

float(x) Convert a number to floating
point.

getattr(object, name)
Get attr called <name> from
<object>.
getattr(x, ‘foobar’)
↔ x.foobar

hasattr(object, name)
Returns true if <object> has
attr called <name>.

hash(object)
Return the hash value of the
object (if it has one)

hex(x) Convert a number to a hexadec-
imal string.

id(object)
Return a unique ‘identity’ inte-
ger for an object.

input([prompt])
Prints prompt, if given. Reads
input and evaluates it.

int(x) Convert a number to a plain
integer.

len(s) Return the length (the number
of items) of an object.

long(x) Convert a number to a long
integer.

map(function, list, ...)
Apply <function> to every
item of <list> and return a
list of the results. If additional
arguments are passed, <func-
tion> must take that many
arguments and it is given to
<function> on each call.

max(s) Return the largest item of a
non-empty sequence.

min(s) Return the smallest item of a
non-empty sequence.

oct(x) Convert a number to an octal
string.

open(filename, mode=’r’, buf-
size=<implementation
dependent>
Return a new file object. First
two args are same as those for
C’s “stdio open” function.
<bufsize> is 0 for unbuff-
ered, 1 for line-buffered, nega-

tive for sys-default, all else, of
(about) given size.

ord(c) Return integer ASCII value of
<c> (a string of len 1).

pow(x, y) Return x to power y.
range(start, end, step)

return list of ints from >= start
and < end. With 1 arg, list from
0 to <arg>-1. With 2 args,
list from <start> to <end>-
1 With 3 args, list from
<start> up to <end> by
<step>

raw_input([prompt])
Print prompt if given, then read
string from std input.

reduce(f, list [, init])
Apply the binary function <f>
to the items of <list> so as to
reduce the list to a single value.
If <init> given, it is “pre-
pended” to <list>.

reload(module)
Re-parse and re-initialize an
already imported module. Use-
ful in interactive mode, if you
want to reload a module after
fixing it. If module was synacti-
cally correct but had an error in
initialization, must import it
one more time before calling
reload().

repr(object)
Return a string containing a

printable representation of an
object. Equivalent to `object`
(using backquotes).

round(x,n=0)
Return the floating point value
x rounded to n digits after the
decimal point.

setattr(object, name, value)
This is the counterpart of
getattr(). setattr(o,
‘foobar’, 3) ↔ o.foo-
bar = 3

str(object)
Return a string containing a
nicely printable representation
of an object.

type(object)
Return type of an object.

E.g.,
if type(x) == type(‘’):
print ‘It is a string’

vars([object])
Without arguments, return a
dictionary corresponding to the
current local symbol table.
With a module, class or class
instance object as argument
returns a dictionary correspond-
ing to the object’s symbol table.
Useful with “%” formatting
operator. Don’t simply type
vars() at interactive prompt!
(But print vars() is fine.)

xrange(start, end, step)

Like range(), but doesn’t
actually store entire list all at
once. Good to use in for loops
when there is a big range and
little memory.

Built-In Exceptions

AttributeError
On attribute reference or
assignment failure

EOFError
Immediate end-of-file hit by
input() or raw_input()

IOError
I/O-related I/O operation fail-
ure

ImportError
On failure of `import’ to find
module or name

IndexError
On out-of-range sequence sub-
script

KeyError
On reference to a non-existent
mapping (dict) key

KeyboardInterrupt
On user entry of the interrupt
key (often `Control-C’)

MemoryError
On recoverable memory
exhaustion

NameError
On failure to find a local or glo-
bal (unqualified) name

OverflowError
On excessively large arithme-
tic operation

RuntimeError
Obsolete catch-all; define a
suitable error instead

SyntaxError
On parser encountering a syn-
tax error

SystemError
On non-fatal interpreter error -
bug - report it

SystemExit
On `sys.exit()’

TypeError
On passing inappropriate type
to built-in op or func

ValueError
On arg error not covered by
TypeError or more precise

ZeroDivisionError
On division or modulo opera-
tion with 0 as 2nd arg

Special Methods For User-Defined

Classes

E.g.
class x:
def __init__(self, v):
self.value = v def

__add__(self, r):
return self.value + r

a = x(3)

(like calling x.__init__(a,3))
a + 4

(equivalent to a.__add__(4))

Special methods for any type

(s: self, o: other)

 __init__(s, args)
object instantiation

__del__(s)
called on object demise

__repr__(s)
repr() and `...` conversions

__str__(s)
str() and ‘print’ statement

__cmp__(s, o)
implements <, ==, >, <=, <>,
!=, >=, is [not]

__hash__(s)
hash() and dict operations

Numeric operations vs special methods

(s: self, o: other)

s+o = __add__(s,o)
s-o = __sub__(s,o)
s*o = __mul__(s,o)
s/o = __div__(s,o)
s%o = __mod__(s,o)
divmod(s,o) = __divmod__(s,o)
pow(s,o) = __pow__(s,o)
s&o = __and__(s,o)
s^o = __xor__(s,o)
s|o = __or__(s,o)
s<<o = __lshift__(s,o)

s>>o = __rshift__(s,o)
nonzero(s) = __nonzero__(s)

(used in boolean testing)

-s = __neg__(s)
+s = __pos__(s)
abs(s) = __abs__(s)
~s = __invert__(s) (bitwise)

int(s) = __int__(s)
long(s) = __long__(s)
float(s) = __float__(s)
oct(s) = __oct__(s)
hex(s) = __hex__(s)
coerce(s,o) = __coerce__(s,o)

All seqs and maps, general operations plus:

(s: self, i: index or key)

 len(s) = __len__(s)
length of object, >= 0.
Length 0 == false

s[i] = __getitem__(s,i)
Element at index/key i, origin
0

Sequences, general methods, plus:

s[i]=v → __setitem__(s,i,v)
del s[i] → __delitem__(s,i)
s[i:j] →__getslice__(s,i,j)
s[i:j]=seq →
__setslice__(s,i,j,seq)
del s[i:j] →
__delslice__(s,i,j)==s[i:j]=[]

Mappings, general methods, plus:

hash(s) → __hash__(s)
hash value for dictionary refer-
ences

s[k]=v → __setitem__(s,k,v)
del s[k] → __delitem__(s,k)

Special informative state attributes for

some types:

X.__dict__
dict used to store object’s write-
able attributes

X.__methods__
list of X’s methods; on many
built-in types.

X.__members__
lists of X’s data attributes

X.__class__
class to which X belongs

X.__bases__
tuple of X base classes

M.__name__
r/o attr, module’s name as string

Important Modules

sys

Variables:
argv The list of command line argu-

ments passed to a Python script.
sys.argv[0] is the script name.

builtin_module_names

A list of strings giving the
names of all modules written in
C that are linked into this inter-
preter.

exc_type
exc_value
exc_traceback

Set when in an exception han-
dler. Are last exception, last
exception value, and traceback
object of call stack when excep-
tion occured.

exitfunc User can set to a parameterless
fcn. It will get called before
interpreter exits.

last_type
last_value
last_traceback

Set only when an exception not
handled and interpreter prints
an error. Used by debuggers.

modules List of modules that have
already been loaded.

path Search path for external mod-
ules. Can be modified by pro-
gram.

ps1
ps2 prompts to use in interactive

mode.
stdin stdout
stderr File objects used for I/O. User

can redirect by assigning a new
file object to them (or any
object with a method “write()”

taking string argument).
tracebacklimit

Maximum levels of tb info
printed on error.

Functions:
exit(n) Exit with status <n>. Raises

SystemExit exception. (Hence
can be caught and ignored by
program)

settrace(func)
Sets a trace function: called
before each line of code is
exited.

setprofile(func)
Sets a profile function for per-
formance profiling.

os

synonym for whatever O/S-specific module is
proper for current environment. Uses posix
whenever possible.
Variables
name name of O/S-specific module

(e.g. posix or mac)
path O/S-specific module for path

manipulations. On Unix,
os.path.split() ↔
posixpath.split()

curdir string used to represent current
directory (‘.’)

pardir string used to represent parent
directory (‘..’)

sep string used to separate directo-
ries (‘/’)

posix

Variables:
environ dictionary of environment vari-

ables,
E.g.. posix.environ[‘HOME’]
error exception raised on POSIX-

related error. Corresponding
value is tuple of errno code and
perror() string.

Some Functions (see doc for more):
chdir(path)

Go to <path>.
close(fd) Close file descriptor <fd>.
_exit(n) Immediate exit, with no clean-

ups, no SystemExit, etc.
Should use this to exit a child
process.

exec(p, args)
“Become” executable <p> with
args <args>

fork() Like C’s fork(). Returns 0 to
child, child pid to parent.

kill(pid, signal)
Like C’s kill

listdir(path)
List names of entries in direc-
tory <path>.

open(file, flags, mode)
Like C’s open(). Returns file
descriptor.

pipe() Creates pipe. Returns pair of
file descriptors (r, w).

popen(command, mode)
Open a pipe to or from <com-

mand>. Result is a file object
to read to or write from, as indi-
cated by <mode> being ‘r’ or
‘w’.

read(fd, n)
Read <n> bytes from <fd> and
return as string.

stat(path)
Returns st_mode,
st_ino, st_dev,
st_nlink, st_uid,
st_gid, st_size,
st_atime, st_mtime,
st_ctime.

system(command)
Execute string <command> in
a subhell. Returns exit status of
subshell.

unlink(path)
Unlink (“delete”) path/file.

wait() Wait for child process comple-
tion. Returns tuple of pid,
exit_status

waitpid(pid, options)
Wait for process pid to com-
plete. Returns tuple of pid,
exit_status

write(fd, str)
Write <str> to <fd>. Returns
num bytes written.

posixpath

Some Functions (see doc for more):
exists(p) True if string <p> is an existing

path
expanduser(p)

Returns string that is <p> with
“~” expansion done.

isabs(p)
True if string <p> is an abso-
lute path.

isdir(p)
True if string <p> is a directory.

isfile(p) True if string <p> is a regular
file.

islink(p) True if string <p> is a symbolic
link.

isfile(p) True if string <p> is a regular
file.

ismount(p)True if string <p> is a mount
point.

split(p) Splits into (head, tail) where
<tail> is last pathname com-
ponent and <head> is every-
thing leading up to that.

splitext(p)
Splits into (root, ext)
where last comp of <root>
contains no periods and <ext>
is empty or starts with a period.

walk(p, visit, arg)
Calls the function <visit>
with arguments (<arg>,
<dirname>, <names>) for
each directory in the directory
tree rooted at <p> The argu-
ment<dirname> specifies the
visited directory, the argument

<names> lists the files in the
directory. The <visit> func-
tion may modify <names> to
influence the set of directories
visited below <dirname>,
e.g., to avoid visiting certain
parts of the tree.

math

Variables: pi e
Functions (see ordinary C man pages for info):
acos(x) asin(x) atan(x)
atan2(x,y) ceil(x) cos(x)
cosh(x) exp(x) fabs(x)
floor(x) fmod(x,y)
ldexp(x,y) log(x) log10(x)
pow(x,y) sin(x) sinh(x)
sqrt(x) tan(x) tanh(x).
frexp(x) - Different than C:

(float,int)=frexp(float)
modf(x) - Different than C:

(float,float)=modf(float)

string

Some Variables:
digits The string ‘0123456789’
uppercase
lowercase
whitespace

Strings containing the appropri-
ate characters

index_error
Exception raised by index() if

substr not found.
Some Functions:
index(s, sub, i=0)

Return the lowest index in <s>
not smaller than <i> where the
substring <sub> is found.

lower(s) Return a string that is <s> in
lowercase

splitfields(s, sep)
Returns a list containing the
fields of the string <s>, using
the string <sep> as a separa-
tor.

joinfields(words, sep)
Concatenate a list or tuple of
words with intervening separa-
tors.

strip(s) Return a string that is <s>
without leading and trailing
whitespace.

upper(s) Return a string that is <s> in
uppercase

regex

Patterns are specified as strings. Default syn-

tax is emacs-style.

Variables:
error Exception when pattern string

isn’t valid regexp.
Functions:
match(pattern, string)

Return how many characters at
the beginning of <string>
match regexp <pattern>. -1

if none.
search(pattern, string)

Return the first position in
<string> that matches
regexp <pattern>. Return
-1 if none.

compile(pattern [,translate])
 Create regexp object that has
methods match() and search()
working as above. Also
group(i1, [,i2]*)

E.g.

p= \
compile(‘id\([a-z]\)\([a-z]\)’)
p.match(‘idab’) ==> 4
p.group(1, 2) ==> (‘a’,‘b’)
set_sytax(flag)

Set syntax flags for future calls
to match(), search() and
compile(). Returns current
value. Flags in module
regex_syntax.

symcomp(pattern [,translate])
Like compile but with symbolic
group names. Names in angle
brackets. Access through
group method.

E.g.

p = \
symcomp(‘id\(<l1>[a-z]\)\(<l2>[
a-z]\)’)
p.match(‘idab’) ==> 4
p.group(‘l1’) ==> ‘a’

regex_syntax

Flags for regex.set_syntax().
BitOr the flags you want together and pass to

function.

Variables:
RE_NO_BK_PARENS

if set, (means grouping, \(is lit-
eral “(“
if not, vice versa

RE_NO_BK_VBAR
if set, | means or, \| is literal “|”
if not, vice versa

RE_BK_PLUS_QM
if set, + or ? are operator, \+, \?
are literal
if not, vice versa

RE_TIGHT_VBAR -- if set, | binds tighter
than ^ or $
if not, vice versa

RE_NEWLINE_OR
if set, \n is an OR operator
if not, it is a normal char

RE_CONTEXT_INDEP_OPS
if not set, special chars always
have special meaning
 if set, depends on context:

^ - only special at the beginning, or after (or |
$ - only special at the end, or before) or |
*, +, ? - only special when not after the
beginning, (, or |
RE_SYNTAX_AWK =

(RE_NO_BK_PARENS |
RE_NO_BK_VBAR |
RE_CONTEXT_INDEP_OPS)

RE_SYNTAX_EGREP =
(RE_SYNTAX_AWK |
RE_NEWLINE_OR)

RE_SYNTAX_GREP = (RE_BK_PLUS_QM
| RE_NEWLINE_OR)

RE_SYNTAX_EMACS = 0

reg_sub

Functions:
sub(pattern, rep, str)

Replace 1st occur of <pat-
tern> in <str> by <rep>
and return this.

gsub(pattern, rep, str)
Replace all occurances of
<pattern> in <str> by
<rep> and return this.

split(str, pattern)
Split <str> into fields seper-
ated by delimiters matching
<pattern> and return as list
of strings.

Other Modules In Base Distribution

Built-ins

 sys Interpreter state vars and func-
tions

__built-in__
Access to all built-in python
identifiers

__main__ Scope of the interpreters main
program, script or stdin

array Obj efficiently representing
arrays of basic values

math Math functions of C standard
time Time-related functions
regex Regular expression matching

operations
marshal Read and write some python

values in binary format
struct Convert between python val-

ues and C structs

Standard

getopt Parse cmd line args in sys.argv.
A la UNIX ‘getopt’.

os A more portable interface to OS
dependent functionality

rand Pseudo-random generator, like
C rand()

regsub Functions useful for working
with regular expressions

string Useful string and characters
functions and exceptions

whrandom Wichmann-Hill pseudo-ran-
dom number generator

Unix

dbm Interface to Unix ndbm data-
base library

grp Interface to Unix group data-
base

posix OS functionality standardized
by C and POSIX standards

posixpath POSIX pathname functions

pwd Access to the Unix password
database

select Access to Unix select multiplex
file synchronization

socket Access to BSD socket interface
thread Low-level primitives for work-

ing with process threads

Multimedia

audioop Useful operations on sound
fragments

imageop Useful operations on images
jpeg Access to jpeg image compres-

sor and decompressor
rgbimg Access SGI imglib image files

Cryptographic Extensions

md5 Interface to RSA’s MD5 mes-
sage digest algorithm

mpz Interface to int part of GNU
multiple precision library

rotor Implementation of a rotor-
based encryption algorithm

Stdwin — Standard Window System

stdwin Standard Window System inter-
face

stdwinevents Stdwin event, command, and
selection constants

rect Rectangle manipulation opera-
tions

SGI IRIX (4 & 5)

al SGI audio facilities
AL al constants
fl Interface to FORMS library
FL fl constants
flp Functions for form designer
fm Access to font manager library
gl Access to graphics library
GL Constants for gl
DEVICE More constants for gl
imgfile Imglib image file interface

SUNOS

sunaudiodev Access to sun audio interface

Workspace exploration and idiom

hints

dir(<module>) list functions, variables in
<module>

dir() get object keys, defaults
to local name space

X.__methods__list of methods supported by X
(if any)

X.__members__List of X’s data attributes
if __name__ == ‘__main__’: main()

invoke main if running as script
map(None, lst1, lst2, ...)

merge lists
b = a[:] create copy of seq structure
_ in interactive mode, is last

value printed
vars() DO NOT type at interactive

prompt! You get infinite loop
(C-c will exit).

Python Mode for Emacs

Type C-c ? when in python-mode for exten-
sive help.

INDENTATION

Primarily for entering new code:
TAB indent line appropriately
LFD insert newline, then indent
DEL reduce indentation, or delete

single character
Primarily for reindenting existing code:
C-c : guess py-indent-offset from

file content; change locally
C-u C-c : ditto, but change globally
C-c TAB reindent region to match its

context
C-c < shift region left by py-indent-

offset
C-c > shift region right by py-indent-

offset

MARKING & MANIPULATING

REGIONS OF CODE

C-c C-b mark block of lines
M-C-h mark smallest enclosing def
C-u M-C-h mark smallest enclosing class
C-c # comment out region of code
C-u C-c # uncomment region of code

MOVING POINT

C-c C-p move to statement preceding
point

C-c C-n move to statement following
point

C-c C-u move up to start of current
block

M-C-a move to start of def
C-u M-C-a move to start of class
M-C-e move to end of def
C-u M-C-e move to end of class

EXECUTING PYTHON CODE

C-c C-c sends the entire buffer to the
Python interpreter

C-c | sends the current region
C-c ! starts a Python interpreter win-

dow; this will be used by subse-
quent C-c C-c or C-c |
commands

The Python Debugger

Accessing

import pdb
(it’s a module written in Python)

Functions
run(string)

interpret string in the debugger
runctx(string, globals, locals)

 interpret string using globals
and locals for namespace

runcall(fun, arg1, arg2, ...)
run function object <fun>
with args given.

pm() run postmortem on last excep-
tion (like debugging a core file)

post_mortem(t)
run postmortem on traceback
object <t>

Defines class “Pdb”
use Pdb to create reusable
debugger objects. Object pre-
serves state (i.e. break points)
between calls.

Pdb defines methods
run(string)

 interpret string in the debugger
runctx(string, globals, locals)

interpret string using globals
and locals for namespace

runcall(fun, arg1, arg2, ...)
run function object with args
runs until a breakpoint hit,
exception, or end of program. If
an exception occurs, variable
__exception__ holds
(exception,value).

Commands

h, help brief reminder of commands
b, break [<arg>]

if <arg> numeric, break at line
<arg> in current file
if <arg> is function object,
break on entry to fcn <arg>

if no arg, list breakpoints
cl, clear [<arg>]

if <arg> numeric, clear break-
point at <arg> in current file
if no arg, clear all breakpoints
after confirmation

w, where print current call stack
u, up move up one stack frame (to

top-level caller)
d, down move down one stack frame
s, step advance one line in the pro-

gram, stepping into calls
n, next advance one line, stepping

over calls
r, return continue execution until current

function returns (the return
value is saved in variable
__return__, which can be
printed or manipulated from
debugger)

c, continue
continue until next breakpoint

a, args print args to current function
rv, retval

prints return value from last
function that returned

p, print <arg>
prints value of <arg> in cur-
rent stack frame

l, list [<first> [, <last>]]
List source code for the current
file. Without arguments, list 11
lines around the current line or
continue the previous listing.

With one argument, list 11 lines
starting at that line. With two
arguments, list the given range;
if the second argument is less
than the first, it is a count.

whatis <arg>
prints type of <arg>

! executes rest of line as a Python
statement in the current stack
frame

q quit immediately stop execution and
leave debugger

<return> executes last command again
Any input debugger doesn’t recognize as a
command is assumed to be a Python statement
to execute in the current stack frame, same as
the exclamation mark (“!”) command does.

Example

(1394) python
Python 1.0.3 (Sep 26 1994)
>>> import rm
>>> rm.run()
Traceback (innermost last):
File “<stdin>”, line 1
File “./rm.py”, line 7
x = div(3)

File “./rm.py”, line 2
return a / r

ZeroDivisionError: integer
division or modulo
>>> import pdb
>>> pdb.pm()
> ./rm.py(2)div: return a / r

(Pdb) list
1 def div(a):
2 -> return a / r
3
4 def run():
5 global r
6 r = 0
7 x = div(3)
8 print x

[EOF]
(Pdb) print r
0
(Pdb) q
>>> pdb.runcall(rm.run) etc.

Quirks

Breakpoints are stored as filename, line
number tuples. If a module is reloaded after
editing, any remembered breakpoints are
likely to be wrong.
Always single-steps through top-most stack
frame. That is, “c” acts like “n”.

